The need for ultra-short (sub-ps) pulsed laser systems with high power and high energy has advanced the mode-locked Ytterbium-doped thin-disk technology in the last decade. Therefore several research groups have made efforts to explore new laser crystals e.g. Yb:SSO, Yb:CAlGO or Yb:Lu 2 O 3 for the generation of sub-500 fs pulses in thin-disk oscillators. Another promising and known candidate for ultra-short pulsed lasers is Yb:CaF 2 , which has been so far only used in bulk laser architecture. In this work, we present the first demonstration of a mode-locked Yb:CaF 2 laser in thin-disk configuration. The resonator cavity was designed for eight passes through the disk per roundtrip at a repetition rate of 35 MHz. A saturable absorber mirror (SESAM) was used to obtain the soliton mode-locking. We achieved close-to transform-limited pulses with a pulse duration of less than 445 fs and an emission spectral width of 2.6 nm at FWHM (i.e. time-bandwidth product of 0.323). At the average output power of 6.6 W this corresponds to a peak-power of 430 kW and pulse energy of 190 nJ. To the best of our knowledge, this is the highest average output power and pulse energy using Yb:CaF 2 as gain material reported to date. Taking into account the dispersion, self-phase modulation, pulse energy, output coupling ratio and laser gain, the pulse-duration estimated from the soliton-equation and our numerical calculations of pulse-propagation is in good agreement with the pulse-duration obtained in the experiment. Higher powers and shorter pulse-durations with this material are the subject of our future investigations.