[1] We model lunar ilmenite abundances over Mare Australe and Mare Ingenii regions using a new approach; we integrate Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) and Clementine UV-visible/near-infrared (UVVIS/NIR) data to obtain a 14-band mosaic (320-2000 nm). We use Hapke's radiative transfer equations to compute spectra for various mixtures of orthopyroxene, clinopyroxene, plagioclase, olivine, and ilmenite, with varying grain size, chemistry, and degree of maturity, and find the closest match between the modeled spectra and the spectra of the less mature pixels (optical maturity ≥ 0.2) in the 14-band mosaic. We calculate a "maximum stoichiometrically possible ilmenite content", using Clementine-derived TiO 2 abundances and the amount of TiO 2 in stoichiometric ilmenite, and use it as a constraint in our model. We validate our methodology with lunar soil spectra of known composition. Our results show that the integrated WAC-UVVIS/ NIR data and the UVVIS/NIR data overestimate ilmenite abundances by 8.80 wt % and 7.97 wt %, respectively, when a fixed maximum of 20 wt % ilmenite is used. When the maximum stoichiometrically possible ilmenite content is used as a constraint, the integrated WAC-UVVIS/NIR data give slightly more accurate ilmenite abundance estimation (±2.87 wt %) than when using only UVVIS/NIR data (± 3.04 wt %). We find ilmenite concentrations of 0À11 wt % in Mare Australe and 0À6 wt % in Mare Ingenii region. Ilmenite abundances between 4 and 7 wt % are exposed in Mare Australe, whereas ilmenite abundances between 7 and 11 wt % are found on the walls of 0.6-11.8 km diameter craters within Mare Australe.