2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR) 2011
DOI: 10.1109/socpar.2011.6089286
|View full text |Cite
|
Sign up to set email alerts
|

Near neighbor distribution in fractal and finite sets

Abstract: Distances of several nearest neighbors of a given point in a multidimensional space play important role in some tasks of data mining. Here we analyze these distances analyzed as random variables defined to be functions of a given point and its k-th nearest neighbor. We prove that if there is a constant q such that the mean k-th neighbor distance to this constant power is proportional to the near neighbor index k then its distance to this constant power converges to Erlang distribution of order k. We also show … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?