2015
DOI: 10.48550/arxiv.1512.04433
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Near-Optimal Bounds for Binary Embeddings of Arbitrary Sets

Samet Oymak,
Ben Recht

Abstract: We study embedding a subset K of the unit sphere to the Hamming cube {−1, +1} m . We characterize the tradeoff between distortion and sample complexity m in terms of the Gaussian width ω(K) of the set. For subspaces and several structured-sparse sets we show that Gaussian maps provide the optimal tradeoff m ∼ δ −2 ω 2 (K), in particular for δ distortion one needs m ≈ δ −2 d where d is the subspace dimension. For general sets, we provide sharp characterizations which reduces to m ≈ δ −4 ω 2 (K) after simplifica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
30
0

Year Published

2017
2017
2020
2020

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(31 citation statements)
references
References 20 publications
1
30
0
Order By: Relevance
“…One of key ingredients of our proof of the RAIC is the local binary embedding (local sensitivity hashing) property by Oymak and Recht [26]. Bilyk and Lacey [29] also reported a similar property.…”
Section: E Local Binary Embedding For Small Regions At Xmentioning
confidence: 81%
See 2 more Smart Citations
“…One of key ingredients of our proof of the RAIC is the local binary embedding (local sensitivity hashing) property by Oymak and Recht [26]. Bilyk and Lacey [29] also reported a similar property.…”
Section: E Local Binary Embedding For Small Regions At Xmentioning
confidence: 81%
“…• Local Binary Embedding (LBE) [26]: The LBE is a refined version of the Binary ε-Stable Embedding (BεSE) by Jacques et.al. [15].…”
Section: B Sketch Of the Proof Of The Raicmentioning
confidence: 99%
See 1 more Smart Citation
“…In this specific situation, it turns out that Assumption 4.1 is very compatible with uniform bounds for binary embeddings, which allows us to make use of related results from the literature. Our first application is based on the following embedding guarantee by Oymak and Recht [OR15] for noiseless, Gaussian 1-bit measurements (cf. Subsection 3.1).…”
Section: Uniform Recovery Without Increment Conditionsmentioning
confidence: 99%
“…The theoretical results for fast binary embedding techniques are rather limited [13,22,23]. Related to us, very recently Yu et al provided an analysis of circulant projections.…”
Section: Introductionmentioning
confidence: 99%