Following the increasing growth in the demand on mobile TV, hybrid broadcast/broadband networks emerged as a suitable approach to overtake the challenges introduced by each network separately in order to enhance users' experience. This paper presents two possible scenarios for a hybrid, spatially separated, broadcast/broadband network to offer mobile TV linear services for the end users. Namely, the first scenario is based on shared spectrum access for both networks while the second one proposes a dedicated spectrum. Using a stochastic geometry approach, the paper derives analytical formulations for both the probability of coverage and ergodic capacity. These formulations are then used to optimize the hybrid network in terms of its key design parameters including the broadcast (BC) coverage radii, the broadband (BB) base stations' (BS) density, and spectral capacity. The results have shown that an optimal BC radius maximizing the probability of coverage and capacity exists and it depends on the BS density of the BB network. Other design parameters have been provided and analyzed leading to an optimal network deployment. To the best of the author's knowledge, this paper presents a first reference work dealing with the optimization of the hybrid network with the coexistence of broadband and broadcast networks, from stochastic geometry perspective, taking into account the inter-cell interference.