2013
DOI: 10.37236/2998
|View full text |Cite
|
Sign up to set email alerts
|

Near Packings of Graphs

Abstract: A packing of a graph $G$ is a set $\{G_1,G_2\}$ such that $G_1\cong G$, $G_2\cong G$, and $G_1$ and $G_2$ are edge disjoint subgraphs of $K_n$. Let $\mathcal{F}$ be a family of graphs. A near packing admitting $\mathcal{F}$ of a graph $G$ is a generalization of a packing. In a near packing admitting $\mathcal{F}$, the two copies of $G$ may overlap so the subgraph defined by the edges common to both copies is a member of $\mathcal{F}$. In the paper we study three families of graphs (1) $\mathcal{E}_k$ -- the fa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 6 publications
0
0
0
Order By: Relevance