This dissertation examines seismological data from regional earthquake sources in order to examine the seismological character of the crust and uppermost mantle in central and eastern United States. Firstly, site amplification of regional highfrequency Lg seismic phases is estimate ed using a Reverse-Two Station (RTS) method. RTS results show topography and sediment thickness are likely to affect amplification and both factors likely frequency-dependent. There is a negative correlation between the RTS-measured amplification and shallow shear-wave velocity. It appears that both regional topography (i.e., long-wavelength topography) and deeper subsurface seismic structures (basins and sediments) have a large impact on site amplification. Subsequently, Pn and Sn travel time tomography is used to estimate the upper most mantle P-wave (Pn) velocity, S-wave (Sn) velocity, and the velocity ratio (VPn/VSn). In addition to velocity, effective attenuation of Sn phase (Q[superscript -1]sn) is also measured. The result shows regions of high velocity such as southern Georgia, eastern South Carolina and NMSZ and low Q[subscript Sn] values. The V[subscript Pn]/V[subscript Sn] ratio shows values higher than the average in regions such as the Mississippi Embayment, New England, and south Appalachian. V[subscript Pn]/V[subscript Sn] ratios are lower than the average in regions such as northwestern CEUS, South Georgia and eastern Texas. We estimated the uppermost mantle temperature by applying a constrained grid-search algorithm includes the observed V[subscript Sn], V[subscript Pn] and Q[subscript Sn] with the calculated velocities of specific compositional models. The uppermost mantle temperature result, [about]300-500C, beneath the northern mid-continent, and the highest temperature, 1100 C, beneath New England