In the classical model for (information theoretically secure) Private Information Retrieval (PIR) due to Chor, Goldreich, Kushilevitz and Sudan, a user wishes to retrieve one bit of a database that is stored on a set of n servers, in such a way that no individual server gains information about which bit the user is interested in. The aim is to design schemes that minimise the total communication between the user and the servers. More recently, there have been moves to consider more realistic models where the total storage of the set of servers, or the per server storage, should be minimised (possibly using techniques from distributed storage), and where the database is divided into R-bit records with R > 1, and the user wishes to retrieve one record rather than one bit. When R is large, downloads from the servers to the user dominate the communication complexity and so the aim is to minimise the total number of downloaded bits. Work of Shah, Rashmi and Ramchandran shows that at least R + 1 bits must be downloaded from servers in the worst case, and provides PIR schemes meeting this bound. Sun and Jafar have considered the download cost of a scheme, defined as the ratio of the message length R and the total number of bits downloaded. They determine the best asymptotic download cost of a PIR scheme (as R → ∞) when a database of k messages is stored by n servers.This paper provides various bounds on the download complexity of a PIR scheme, generalising those of Shah et al. to the case when the number n of servers is bounded, and providing links with classical techniques due to Chor et al. The paper also provides a range of constructions for PIR schemes that are either simpler or perform better than previously known schemes. These constructions include explicit schemes that achieve the best asymptotic download complexity of Sun and Jafar with significantly lower upload complexity, and general techniques for constructing a scheme with good worst case download complexity from a scheme with good download complexity on average. * Parts of this paper were presented at the International Symposium on Information Theory,
The PIR ModelIn the classical model for private information retrieval (PIR) due to Chor, Goldreich, Kushilevitz and Sudan [14], a database X is replicated across n servers S 1 , S 2 , . . . , S n . A user wishes to retrieve one bit of the database, so sends a query to each server and downloads their reply. The user should be able to deduce the bit from the servers' replies. Moreover, no single server should gain any information on which bit the user wishes to retrieve (without collusion). The resulting protocol is known as an (information-theoretic) PIR scheme; there are also computational variants of the security model [30]. The goal of PIR is to minimise the total communication between the user and the servers.In practice, the assumption that the user only wishes to retrieve one bit of the database, and the assumption that there is no shortage of server storage seem unrealistic. Because of this, many recen...