The aim of this review is to perform a critical analysis of experimental studies on aerosolized antibiotics and draw lessons for clinical use in patients with ventilator-associated pneumonia. Ultrasonic or vibrating plate nebulizers should be preferred to jet nebulizers. During the nebulization period, specific ventilator settings aimed at decreasing flow turbulence should be used, and discoordination with the ventilator should be avoided. The appropriate dose of aerosolized antibiotic can be determined as the intravenous dose plus extrapulmonary deposition. If these conditions are strictly respected, then high lung tissue deposition associated with rapid and efficient bacterial killing can be expected. For aerosolized aminoglycosides and cephalosporins, a decrease in systemic exposure leading to reduced toxicity is not proven by experimental studies. Aerosolized colistin, however, does not easily cross the alveolar-capillary membrane even in the presence of severe lung infection, and high doses can be delivered by nebulization without significant systemic exposure. V ENTILATOR-ASSOCIATED pneumonia frequently complicates the clinical course of patients admitted to intensive care units for multiorgan failure.1,2 Its incidence may be as high as 28% in patients on mechanical ventilation for more than 48 h and 70% in patients with acute lung injury or acute respiratory distress syndrome.3 It prolongs the duration of stay in the intensive care unit, increases costs, 4 and represents the main reason for the prescription of antibiotics in critically ill patients. 5 Associated mortality ranges between 20 and 80% and seem far greater than the mortality resulting from other nosocomial infections.6,7 Causative microorganisms such as Pseudomonas aeruginosa or Acinetobacter baumannii specifically increase mortality.8 Early intravenous administration of appropriate antibiotics is considered as a prerequisite for an efficient treatment of ventilator-associated pneumonia, and bacteriological identification of causative microorganisms is the only way to limit the unnecessary use of antibiotics in the intensive care unit.7 Lung penetration of intravenous antibiotics is, however, often limited; despite appropriate initial antibiotics administration, treatment failure is not infrequent, leading to increased dosage, risk of systemic toxicity, and prolongation of administration. Inappropriate antibiotic concentration at the site of infection and increased antibiotic exposure within the intensive care unit represent important risk factors for development of ventilator-associated pneumonia with resistant organisms. 9,10 Aerosolized antibiotics could represent an attractive alternative to intravenous antibiotics with numerous potential advantages. Reaching the deep lung through the tracheobronchial tree should allow a better control of the main source of parenchymal infection, bronchial colonization.