In this paper, we investigate the Lagrange dynamics generated by a class of isoperimetric constrained controlled optimization problems involving second-order partial derivatives and boundary conditions. More precisely, we derive necessary optimality conditions for the considered class of variational control problems governed by path-independent curvilinear integral functionals. Moreover, the theoretical results presented in the paper are accompanied by an illustrative example. Furthermore, an algorithm is proposed to emphasize the steps to be followed to solve a control problem such as the one studied in this paper.