Aim
This study compares the precision, accuracy, and user experience of 3D body surface scanning of human subjects using the Artec Leo hand-held scanner and the iPad Pro as 3D scanning devices for capturing cervical and craniofacial data. The investigation includes assessing methods for correcting 'dropped head syndrome' during scanning, to demonstrate the ability of the scanner to be used to reconstruct body surface of patients.
Methods
Eighteen volunteers with no prior history of neck weakness were scanned three times in three different positions, using the two different devices. Surface area, scanning time, and participant comfort scores were evaluated for both devices. Precision and accuracy were assessed using Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Intra-Class Correlation Coefficients (ICC).
Results
Surface area comparisons revealed no significant differences between devices and positions. Scanning times showed no significant difference between devices or positions. Comfort scores varied across positions. MAD analysis identified chin to chest measurements as having the highest variance, especially in scanning position 3. However, no statistical differences were found. MAPE results confirmed accuracy below 5% error for both devices. ICC scores indicated good reliability for both measurement methods, particularly for chin to chest measurements in positions 1 and 3.
Conclusion
The iPad Pro using the Qlone app demonstrates a viable alternative to the Artec Leo, particularly for capturing head and neck surface area within a clinical setting. The scanning resolution, with an error margin within ±5%, is consistent with clinically accepted standards for orthosis design, where padding and final fit adjustments allow for bespoke devices that accommodate patient comfort. This study highlights the comparative performance of the iPad, as well as suggests two methods which can be used within clinics to correct head drop for scanning.