The rotator cuff is composed of several distinct muscles and tendons that function in concert to coordinate shoulder motion. Injuries to these tendons frequently result in permanent dysfunction and persistent pain. Despite considerable advances in operation techniques, surgical repair alone still does not fully restore rotator cuff function. This review focuses on recent research in the use of biologics and stem cell-based therapies to augment repair, highlighting promising avenues for future work and remaining challenges. While a number of animal models are used for rotator cuff studies, the anatomy of the rotator cuff varies dramatically between species. Since the rodent rotator cuff shares the most anatomical features with the human, this review will focus primarily on rodent models to enable consistent interpretation of outcome measures.