BaBiO 3 (BBO) is known to be a valence-skipping perovskite, which avoids the metallic state through charge disproportionation (CD), the mechanism of which is still unresolved. A novel mechanism for CD is presented here in the covalent limit using a molecular orbital (MO) picture under two scenarios: (case i) Bi 6sp−O 2p and (case ii) Bi 6p−O 2p hybridizations that favor 5+ and 3+ states, respectively. The proposed model is further validated by using a combinatorial approach of X-ray spectroscopic experiments and first-principle calculations. The bulk X-ray photoemission spectrum reveals that, at room temperature, the CD is dynamic in nature, whereas, at 200 K, it approaches a quasi-static limit. Under compressive strain, the octahedral breathing mode is damped and drives the system to a quasi-static limit even at room temperature, giving rise to asymmetric CD.