Cerenkov luminescence imaging offers a new diagnostic alternative to radiation imaging, but lacks intensity and penetration. In this study, a Cerenkov luminescence signal and its image quality were enhanced using rare earth oxide nanoparticles as a basis for Cerenkov luminescence excited fluorescence imaging and Cerenkov luminescence excited fluorescence tomography. The results also provided 3D-imaging and quantitative information. The approach was evaluated using phantom and mice models and 3D reconstruction and quantitative studies were performed in vitro, showing improved optical signal intensity, similarity, accuracy, signal-to-noise ratio, and spatial distribution information. The method offers benefits for both optical imaging research and radiopharmaceutical development.