Strong Coulomb interactions in monolayer semiconductors allow them to host optically active large many-body states, such as the five-particle state, charged biexciton. Strong nonlinear light absorption by the charged biexciton under spectral resonance, coupled with its charged nature, makes it intriguing for nonlinear photodetectionan area that is hitherto unexplored. Using the high built-in vertical electric field in an asymmetrically designed few-layer graphene encapsulated 1L-WS 2 heterostructure, here we report a large, highly nonlinear photocurrent arising from the strong absorption by two charged biexciton species under zero external bias (self-powered mode). Time-resolved measurement reveals that the generated charged biexcitons transfer to the fewlayer graphene in a time scale of sub-5 ps, indicating an ultrafast intrinsic limit of the photoresponse. By using single-and two-color photoluminescence excitation spectroscopy, we show that the two biexcitonic peaks originate from bright-dark and bright-bright exciton-trion combinations. Such innate nonlinearity in the photocurrent due to its biexcitonic origin, coupled with the ultrafast response due to swift interlayer charge transfer, exemplifies the promise of manipulating many-body effects in monolayers toward viable optoelectronic applications.