2024
DOI: 10.46298/ocnmp.11597
|View full text |Cite
|
Sign up to set email alerts
|

Negative flows and non-autonomous reductions of the Volterra lattice

V. E. Adler

Abstract: We study reductions of the Volterra lattice corresponding to stationary equations for the additional, noncommutative subalgebra of symmetries. It is shown that, in the case of general position, such a reduction is equivalent to the stationary equation for a sum of the scaling symmetry and the negative flows, and is written as $(m+1)$-component difference equations of the Painlev\'e type generalizing the dP$_1$ and dP$_{34}$ equations. For these reductions, we present the isomonodromic Lax pairs and derive the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 26 publications
0
0
0
Order By: Relevance