Ca2+-activated K+ channels (KCa) play a pivotal role in the physiology of a wide variety of tissues and disease states, including vascular endothelia, secretory epithelia, certain cancers, red blood cells (RBC), neurons and immune cells. Such widespread involvement has generated an intense interest in elucidating the function and regulation of these channels, with the goal of developing pharmacological strategies aimed at selective modulation of KCa channels in various disease states. Herein, we give an overview of the molecular and functional properties of these channels and their therapeutic importance as well as discuss the achievements made in designing pharmacological tools which control the function of KCa channels by modulating their gating properties. Moreover, this review discusses the recent advances in our understanding of KCa channel assembly and anterograde trafficking toward the plasma membrane, the microdomains in which these channels are expressed within the cell and finally the retrograde trafficking routes these channels take following endocytosis. As both the regulation of intracellular trafficking by agonists, as well as the protein-protein interactions that modify these events continue to be explored, we anticipate this will open up new therapeutic avenues for the targeting of these channels based on the pharmacological modulation of KCa channel density at the plasma membrane.