Mass spectrometry (MS) was used in conjunction with electron paramagnetic resonance (EPR) to characterize products arising from reactions between reduced glutathione (GSH) and 2-methyl 2-nitroso propane (MNP) in an oxidative medium, to evaluate the reactivity of this tripeptide as a nucleophile toward a nitroso compound. Depending on the experimental conditions, different radical species could be detected by EPR, which allowed some structural assumptions. These samples were then submitted to electrospray ionization, in both positive and negative ion modes, for structural elucidation in tandem mass spectrometry. Although the primary nitroxide products could not be detected in MS, structurally related compounds such as hydroxylamine and O-methyl hydroxylamine could be fully characterized. In the absence of light, a S-adduct was formed via a Forrester-Hepburn reaction, that is, a nucleophile addition of MNP onto the thiol function in reduced glutathione to yield a hydroxylamine intermediate, further oxidized into nitroxide. In contrast, irradiating the reaction medium with visible light could allow an inverted spin trapping reaction to take place, involving the oxidation of both MNP and GSH before the nucleophilic addition of the sulfenic acid function onto the nitrogen of MNP, yielding a so-called O-adduct. It was also found that dilution of the reaction medium with methanol for the purpose of electrospray ionization could allow nitroxides to be indirectly observed either as hydroxylamine or O-methyl hydroxylamine species. (J Am Soc