In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human a 1,2,3,5 b 2,3 g 2S GABA A receptors (GABA A Rs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the a 4,6 b 1,2,3 d GABA A R subtypes, ranging from inactivity (Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABA A R. Instead, the compound is proposed to act through the transmembrane b(1) /a (-) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABA A R modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 mM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABA A Rs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABA A Rs give rise to its effects as a therapeutic and recreational drug.