A novel class of hexagonal nanoscale honeycombs made from penta and tetra substituted polyphenlyacetylenes is proposed and modeled as crystalline systems using force‐field based simulations. It is shown that, in‐plane, these systems behave rather similarly to crystalline forms of graphyne, graphdiyne, and other fully substituted equivalents but benefit from the presence of larger pores which makes them less stiff and may enable them to be used in a wider range of applications such as nanofiltration. It is also shown that at large strains these systems have the potential to exhibit auxetic out‐of‐plane behaviour, a property which can be manifested in other triangulated systems and can be explained from buckling of some nanoribs in the systems.