IntroductionCompulsive behavior has been proposed as a transdiagnostic trait observed in different neuropsychiatric disorders, such as obsessive-compulsive disorder, autism, and schizophrenia. Research Domain Criteria (RDoC) strategy could help to disentangle the neuropsychological basis of compulsivity for developing new therapeutic and preventive approaches. In preclinical research, the selection of high-drinker (HD) vs. low-drinker (LD) animals by schedule-induced polydipsia (SIP) is considered a putative model of compulsivity, which includes a well-differentiated behavioral pattern.MethodsThe purpose of this research was to assess the cognitive control and the negative valence system domains in a phenotype of compulsive HD rats. After the selection of animals as HD or LD, we assessed behavioral inflexibility by probabilistic spatial reversal learning (PSRL), motor and cognitive impulsivity by variable delay-to-signal (VDS), and risky decision-making by rodent gambling task (rGT).ResultsHD rats performed fewer reversals and showed less probability of pressing the same lever that was previously reinforced on PSRL, more premature responses after the exposure to longer delays on VDS, and more disadvantageous risky choices on rGT. Moreover, HD animals performed more perseverative responses under the punishment period on rGT.DiscussionThese results highlight that HD compulsive phenotype exhibits behavioral inflexibility, insensitivity to positive feedback, waiting impulsivity, risky decision-making, and frustrative non-reward responsiveness. Moreover, these findings demonstrate the importance of mapping different behavioral domains to prevent, treat, and diagnose compulsive spectrum disorders correctly.