Abstract:This paper addresses the problem of balancing statistical economic data, when data structure is arbitrary and both uncertainty estimates and a ranking of data quality are available. Using a Bayesian approach, the prior configuration is described as a multivariate random vector and the balanced posterior is obtained by application of relative entropy minimization. The paper shows that conventional data balancing methods, such as generalized least squares, weighted least squares and biproportional methods are particular cases of the general method described here. As a consequence, it is possible to determine the underlying assumptions and range of application of each traditional method. In particular, the popular biproportional method is found to assume that all source data has the same relative uncertainty. Finally, this paper proposes a simple linear iterative method that generalizes the biproportional method to the data balancing problem with arbitrary data structure, uncertainty estimates and multiple data quality levels.