2024
DOI: 10.1002/cpe.8017
|View full text |Cite
|
Sign up to set email alerts
|

Neighbor cleaning learning based cost‐sensitive ensemble learning approach for software defect prediction

Li Li,
Renjia Su,
Xin Zhao

Abstract: SummaryThe class imbalance problem in software defect prediction datasets leads to prediction results that are biased toward the majority class, and the class overlap problem leads to fuzzy boundaries for classification decisions, both of which affect the model's prediction performance on the dataset. A neighbor cleaning learning (NCL) is an effective technique for defect prediction. To solve the class overlap problem and class imbalance problem, the NCL‐based cost‐sensitive ensemble learning approach for soft… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance