A theta graph Θ2,1,2 is a graph obtained by joining two vertices by three internally disjoint paths of lengths 2, 1, and 2. A neighbor sum distinguishing (NSD) total coloring ϕ of G is a proper total coloring of G such that ∑z∈EG(u)∪{u}ϕ(z)≠∑z∈EG(v)∪{v}ϕ(z) for each edge uv∈E(G), where EG(u) denotes the set of edges incident with a vertex u. In 2015, Pilśniak and Woźniak introduced this coloring and conjectured that every graph with maximum degree Δ admits an NSD total (Δ+3)-coloring. In this paper, we show that the listing version of this conjecture holds for any IC-planar graph with maximum degree Δ≥9 but without theta graphs Θ2,1,2 by applying the Combinatorial Nullstellensatz, which improves the result of Song et al.