2011
DOI: 10.1016/j.eswa.2011.02.179
|View full text |Cite
|
Sign up to set email alerts
|

Neighborhood rough set and SVM based hybrid credit scoring classifier

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
23
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 81 publications
(24 citation statements)
references
References 13 publications
0
23
0
1
Order By: Relevance
“…Zhou et al (2009) used direct search for parameters selection in the SVM classification algorithm. In a study by Ping and Yongheng (2011), neighborhood rough set and the SVM-based classifier were used for credit scoring. In another study (Kao et al, 2012), Bayesian latent variable model with classification regression tree was employed.…”
Section: Introductionmentioning
confidence: 99%
“…Zhou et al (2009) used direct search for parameters selection in the SVM classification algorithm. In a study by Ping and Yongheng (2011), neighborhood rough set and the SVM-based classifier were used for credit scoring. In another study (Kao et al, 2012), Bayesian latent variable model with classification regression tree was employed.…”
Section: Introductionmentioning
confidence: 99%
“…We have to underline that, most of the times, qualitative information is not treated properly: in Akkoç (2012) and Ping and Yongheng (2011) categorical predictors are employed as numerical ones. Alternatively, they were encoded as binary features using 1-of-k encoding (Gönen et al 2012;Abdou et al 2008), but such process generally generates a matrix with linearly dependent columns that produces non-robust estimates.…”
Section: Credit Scoring Datamentioning
confidence: 99%
“…Entre los modelos no probabilistas usados en la literatura para calcular dichas probabilidades, también se encuentran los propuestos por (Huang, Chen, & Wang, 2007) quienes construyen modelos de calificación de crédito basado en Support Vector Machines (SVM) híbridos, para evaluar la puntuación de crédito de solicitantes de tarjetas de crédito, por su parte, (Ping & Yongheng, 2011) hacen un esfuerzo similar, el que comparan con modelos de análisis discriminante lineal, regresión logística y redes neuronales.…”
Section: Scorings De Créditounclassified