In order to explore the feasibility of using algae to treat the fly ash leachate from a safe landfill site, leachate samples taken from a certain safe landfill site in Wenzhou City were treated with two different microalgae, Chlorella vulgaris and Scenedesmus obliquus, and the effectiveness of each treatment was evaluated in terms of its efficiency of pollutant removal. The effects of conditions such as pretreatment of leachate by sterilization, the initial concentration of leachate, and the addition of nutrients on pollutant removal efficiency and algae growth were studied. Sterilization of the leachate was found to have a relatively small impact on the growth of C. vulgaris and S. obliquus, as well as the removal of pollutants from the leachate. Therefore, sterilization treatment may not be necessary for engineering applications. Algal growth and the removal of pollutants were optimal when the leachate was used at a concentration of 10%, but when the leachate concentration was 30% or higher, the growth of both algae was weakened. The inclusion of 0.2 g/L K2HPO4·3H2O and 0.06 g/L ammonium ferric citrate in the system led to higher algal growth and pollutant removal. The chlorophyll a levels of C. vulgaris and S. obliquus were 555.53% and 265.15%, respectively, and the nitrogen removal rates were also the highest, reaching 59.51% and 56.69%, respectively. This study optimized the cultivation conditions of a microalgae treatment leachate system, providing technical support and a theoretical basis for the practical engineering of a harmless treatment of leachate.