During a survey on soil nematode diversity, the soil samples were collected from Field-1 (3-months-not-used land), Field-2 (5-years-not-disturbed land), Field-3 (the rhizosphere of tomatoes), and Field-4 (natural land, not disturbed for 50 years), in Dalmada, Limpopo Province, South Africa. A total of 25 nematode genera were found to be associated with the surveyed plant species. The result showed Acrobeloides, Aphelenchus, Aporcella, Ditylenchus, Mesorhabditis, Pratylenchus, and Rotylenchus with a 100% frequency of occurrence. Meloidogyne was detected only in association with Field-3, with a low frequency of occurrence (25%). The study of the relationship between nematodes with physicochemical properties in the soil using Pearson correlation revealed that phosphate of the soil had a positive correlation (r = 0.977) with Bitylenchus and Pseudacrobeles species. In contrast, pH strongly correlated with Nanidorus (r = 0.928), Trypilina (r = 0.925), Xiphinema (r = 0.925), and Zeldia (r = 0.860). The principal component analysis placed Field-4 and Field-3 in two groups, indicating the biodiversity dynamics among the two locations. Soil texture showed that clay was correlated with Rotylenchulus. In contrast, soil texture had no effect on Meloidogyne. The Shannon index was the lowest (1.7) for Field-1 in Dalmada compared to the other Fields, indicating lower nematode diversity. The structure index showed that Field-2 was disturbed with a low C:N ratio. In contrast, Field-3 and Field-4 had suppressive soil but matured and fertile. The network analysis showed that Panagrolaimus was only found in Field-4 and was the most engaging genus describing soil quality in the soil system in Dalmada. In conclusion, Field-2 showed a high diversity of free-living nematodes than the disturbed land of tomatoes. Additionally, plant-parasitic nematodes numbered more in the rhizosphere of tomatoes. The results suggest that the soil nematodes, especially free-living bacterivores, may mediate the effects of ecosystem disturbance on soil health.