Parkinson’s disease (PD) is a progressive neurological disorder and appears to have gender-specific symptoms. Studies have observed a higher frequency for development of PD in male than in female. In the current study, we evaluated the gender-based changes in cortical thickness and structural connectivity in PD patients. With informed consent, 64 PD (43 males and 21 females) patients, and 46 (12 males and 34 females) age-matched controls underwent clinical assessment including MiniMental State Examination (MMSE) and magnetic resonance imaging on a 1.5 Tesla clinical MR scanner. Whole brain high-resolution T1-weighted images were acquired from all subjects and used to measure cortical thickness and structural network connectivity. No significant difference in MMSE score was observed between male and female both in control and PD subjects. Male PD patients showed significantly reduced cortical thickness in multiple brain regions including frontal, parietal, temporal, and occipital lobes as compared with those in female PD patients. The graph theory-based network analysis depicted lower connection strengths, lower clustering coefficients, and altered network hubs in PD male than in PD female. Male-specific cortical thickness changes and altered connectivity in PD patients may derive from behavioral, physiological, environmental, and genetical differences between male and female, and may have significant implications in diagnosing and treating PD among genders.