Detailed mineralogical and textural studies, combined with sequential X-ray diffraction and geochemical modeling, helped to solve the “copper pitch/wad” enigma in the Exótica deposit located downstream of the Chuquicamata porphyry copper deposit. Copper pitch and copper wad are essentially chrysocolla with co-precipitated Mn oxides, mainly birnessite, as well as pseudo-amorphous Mn oxide/oxyhydroxides. Linking the mineralogical, geochemical, and textural evidences with the geological, tectonic, and climatic evolution of the Chuquicamata–Calama area, a four-step genetic model for the evolution of the Exótica deposit is presented: (A) formation of a mature supergene enrichment profile at Chuquicamata (~ 30–25 Ma to ~ 15 Ma) during an erosion-dominated regime (∼900 m of erosion) which was accompanied by acidic (pH ∼2–4) Cu-Mn-Si-dominated rock drainage (ARD) with fluid flow southwards through the Exótica valley towards the Calama Basin, resulting in a strongly kaolinized and chrysocolla/copper wad-impregnated bedrock of the Exótica deposit; (B) deposition of the Fortuna gravels in the Exótica valley (starting ∼19 Ma) intercepted the Cu-Mn-Si-dominated ARD, triggering the main chrysocolla, copper pitch/wad mineralization as syn-sedimentary mineralization by chiefly surficial flow in strongly altered gravels; (C) tectonic freezing and onset of hyper-aridity (∼15–11 Ma) exposed the enriched chalcocite blanket of Chuquicamata to oxidation, resulting in acidic (pH ~ 2–4) and Cu-Si-dominated solutions with less Mn. These solutions percolated in a slightly more reducing groundwater flow path and mineralized relatively unaltered gravels with pure chrysocolla; and (D) ingression of confined chloride-rich groundwater in the upper oxidation zone of Chuquicamata, most likely between 6 and 3 Ma, is responsible for the atacamite/brochantite mineralization (pH ~ 5.5–7) of mainly unaltered gravels in the northern and central part of the Exótica deposit.