For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis progression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when inoculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these Botryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed.