Burrowing arachnids are important to modern soil ecosystems, but knowledge of these animals in ancient soil ecosystems is limited. In this study, two species of burrowing spiders were studied: Gorgyrella inermis (South African trapdoor spider) and Hogna lenta (field wolf spider). Individuals of each species were studied to investigate their burrowing techniques and behaviors and to categorize the morphologies of their burrows. Experiments were run with variations in sediment density and sediment moisture to evaluate the effects of environmental conditions on burrow morphology. Seven burrow architectures were produced by the spiders: vertical shafts, vertical shafts with terminal chambers, subvertical shafts, subvertical shafts with terminal chambers, Jshaped burrows, Y-shaped burrows, and isolated chambers. All burrow architectures share common features that make them identifiable as spider burrows. Sediment density and moisture had little influence on burrow morphology, but architecture diversity was greatest in sediments of moderate density and moisture. Results from this study show that spiders produce unique biogenic structures that can be distinguished from the burrows of other soil organisms. Data collected from this study can be used to better interpret the paleoecology and evolutionary history of spiders and soil arthropods.