Novel 2 and 3‐substituted quinoxaline derivatives were synthesized through various synthetic pathways, among which cyanoacetamide and cyanoacetohydrazide quinoxaline derivatives 4a‐c and 11a‐c, respectively, were synthesized. Furthermore, methoxy quinoxaline derivatives 3c and quinoxaline derivatives bearing substituted pyridines 6a,b, 12a,b, and 13a,b were designed to be synthesized. However, we have synthesized acrylohydrazide 5a,b and 7/acrylamide derivatives, Schiff base analogues 14a‐f, pyrazole derivatives 15a‐e, amide derivatives 16a‐f, guanidine derivatives 16 g,h as well as, quinoxalin‐2‐methylallyl propionate derivative 14g. All the synthesized compounds were confirmed via spectral data and elemental analyses. Moreover, the newly synthesized compounds were evaluated for their antimicrobial activity (Gm +ve, Gm −ve in comparison to Gentamycin a standard) and fungi (in comparison to Ketoconazole as a standard). Thus, compound 16b showed promising antimicrobial activity against B. subtilis, P. vulgaris, and S. mutants with values ranging from 20 to 27‐mm zone of inhibition. While compounds 5a, 14e,f, and 16a,c,d,g,h showed potent antimicrobial activity. Moreover, the National Cancer Institute (NCI) selected 20 compounds that were submitted for anticancer screening against 60 types of cancer cell lines. The most active compounds are 5b and 12a where compound 5b containing 2,4‐dichlorophenyl moiety at cyanoacetamide linkage of hydrazine quinoxaline backbone exerted significant growth inhibition activity against Leukemia MOLT‐4, Renal cancer UO‐31, and Breast cancer MCF‐7. In addition, compound 12a having 4,6‐diaminopyridinone side chain at position‐3 of quinoxaline nucleus exhibited remarkable anticancer activity against renal cancer UO‐31.