Atrial arrhythmias are a hallmark of heart diseases. The antiarrhythmic drug ranolazine with multichannel blocker properties is a promising agent to treat atrial arrhythmias. We therefore used the rat model of monocrotaline-induced pulmonary-hypertension to assess whether ranolazine can reduce the incidence of ex vivo atrial arrhythmias in isolated right atrium. Four-week-old Wistar rats were injected with 50 mg/kg of monocrotaline, and isolated right atrium function was studied 14 days later. The heart developed right atrium and right ventricular hypertrophy, and the ECG showed an increased P wave duration and QT interval, which are markers of the disease. Moreover, monocrotaline injection caused enhanced chronotropism and faster kinetics of contraction and relaxation in isolated right atrium. Additionally, in a concentration-dependent manner, ranolazine showed chronotropic and ionotropic effects upon isolated right atrium, with higher potency in the control when compared with experimental model. Using a burst pacing protocol, the isolated right atrium from the monocrotaline-treated animals was more susceptible to develop arrhythmias, and ranolazine was able to attenuate the phenotype. Thus, we concluded that the rat model of monocrotaline-induced pulmonary-hypertension develops right atrium remodelling, which increased the susceptibility to present ex vivo atrial arrhythmias, and the antiarrhythmic drug ranolazine ameliorated the phenotype.