BACKGROUND
The glomerular filtration rate (GFR) assesses the function of all nephrons, and the single-nephron GFR assesses the function of individual nephrons. How the single-nephron GFR relates to demographic and clinical characteristics and kidney-biopsy findings in humans is unknown.
METHODS
We identified 1388 living kidney donors at the Mayo Clinic and the Cleveland Clinic who underwent a computed tomographic (CT) scan of the kidney with the use of contrast material and an iothalamate-based measurement of the GFR during donor evaluation and who underwent a kidney biopsy at donation. The mean single-nephron GFR was calculated as the GFR divided by the number of nephrons (calculated as the cortical volume of both kidneys as assessed on CT times the biopsy-determined glomerular density). Demographic and clinical characteristics and biopsy findings were correlated with the single-nephron GFR.
RESULTS
A total of 58% of the donors were women, and the mean (±SD) age of the donors was 44±12 years. The mean GFR was 115±24 ml per minute, the mean number of nephrons was 860,000±370,000 per kidney, and the mean single-nephron GFR was 80±40 nl per minute. The single-nephron GFR did not vary significantly according to age (among donors <70 years of age), sex, or height (among donors ≤190 cm tall). A higher single-nephron GFR was independently associated with larger nephrons on biopsy and more glomerulosclerosis and arteriosclerosis than would be expected for age. A higher single-nephron GFR was associated with a height of more than 190 cm, obesity, and a family history of end-stage renal disease.
CONCLUSIONS
Among healthy adult kidney donors, the single-nephron GFR was fairly constant with regard to age, sex, and height (if ≤190 cm). A higher single-nephron GFR was associated with certain risk factors for chronic kidney disease and certain kidney-biopsy findings. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases.)