Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVAderived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation.Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube thermal conductivity. This leads to the conclusion that, while BNTR operation is possible with a NERVA-derived reactor, doing so requires careful consideration of the Brayton cycle design point and fuel element survivability.