Background: Foot and ankle injuries frequently require a period of nonweightbearing, resulting in muscle atrophy. Our previous study compared a hands-free single crutch (HFSC) to standard axillary crutches and found increased muscle recruitment and intensity while using the HFSC. Knee scooters are another commonly prescribed nonweightbearing device. The purpose of this study is to examine the electromyographic (EMG) differences between an HFSC and knee scooter, in conjunction with device preference and perceived exertion. Methods: A randomized crossover study was performed using 30 noninjured young adults. Wireless surface EMG electrodes were placed on the belly of the rectus femoris (RF), vastus lateralis (VL), lateral gastrocnemius (LG), and gluteus maximus (GM). Participants then ambulated along a 20-m walking area while 15 seconds of the gait cycle was recorded across 3 conditions: walking with a knee scooter, an HFSC, and with no assistive device. Mean muscle activity and peak EMG activity were recorded for each ambulatory modality. Immediately following testing, patient exertion and device preference was recorded. Results: The RF, LG, and GM showed increased peak EMG activity percentage, and the LG showed increased mean muscle activity while using the HFSC compared with the knee scooter. When comparing the knee scooter and HFSC to walking, both showed increased muscle activity in the RF, VL, and LG but no difference in the GM. There was no statistical difference in participant preference, whereas the HFSC had a statistically significant higher perceived exertion than the knee scooter ( P < .001). Conclusion: In this group of young, healthy noninjured volunteers, the HFSC demonstrated increased peak EMG activity in most muscle groups tested compared with the knee scooter. Level of Evidence: Level II, prospective comparative study.