RNAs play important roles in gene expression through translation and RNA splicing. Regulation of specific RNAs is useful to understand and manipulate specific transcripts. Pumilio and fem-3 mRNA-binding factor (PUF) proteins, programmable RNA-binding proteins, are promising tools for regulating specific RNAs by fusing them with various functional domains. The key question is: How can PUF-based molecular tools efficiently regulate RNA functions? Here, we show that the combination of multiple PUF proteins, compared to using a single PUF protein, targeting independent RNA sequences at the 3′ untranslated region (UTR) of a target transcript caused cooperative effects to regulate the function of the target RNA by luciferase reporter assays. It is worth noting that a higher efficacy was achieved with smaller amounts of each PUF expression vector introduced into the cells compared to using a single PUF protein. This strategy not only efficiently regulates target RNA functions but would also be effective in reducing off-target effects due to the low doses of each expression vector.