Denote by $${\mathbb {G}}(k,n)$$
G
(
k
,
n
)
the Grassmannian of linear subspaces of dimension k in $${\mathbb {P}}^n$$
P
n
. We show that if $$\varphi :{\mathbb {G}}(l,n) \rightarrow {\mathbb {G}}(k,n)$$
φ
:
G
(
l
,
n
)
→
G
(
k
,
n
)
is a nonconstant morphism and $$l \not =0,n-1$$
l
≠
0
,
n
-
1
, then $$l=k$$
l
=
k
or $$l=n-k-1$$
l
=
n
-
k
-
1
and $$\varphi $$
φ
is an isomorphism.