Nestmate recognition is fundamental to colonial cohesion in social insects, since it allows altruistic behavior towards relatives, recognition of intruders, territorial monopoly and resources defense. In ants, olfactory cues is a key factor in this process. Pseudomyrmex concolor is a highly aggressive ant that defends their host plant Tachigali myrmecophila against herbivores. However, this defense depends on the ant ability to discriminate in order to treat differentially between members of their own colony and intruders . In this study we investigated "whether" and "how" P. concolor recognizes nestmates from non-nestmates. We hypothesized that P. concolor is skillful in recognizing nestmates and tested it in field with experiments using nestmates and non-nestmates. Additionally, to test the efficiency of resident ants against intraspecific competition during colony foundation, we simulate the plant occupation by a competitor queen, introducing nonnestmates queens in plants previously occupied by P. concolor. For the issue of the "how", we hypothesized that the main cue used by this ant in nestmate recognition is olfactory signal. Thus, we tested adaptive threshold model, which predicts that, if the individual odor and colony's internal template are discrepant enough, the resident nestmate will behave aggressively towards incoming individuals. In this case, we confined nestmates with non-nestmates odors, and then, we reintroduced them in its host plants. In each experiment the frequency of aggressive behaviors were recorded and compared. Results showed that P. concolor recognize and discriminate nestmates from non-nestmates workers (biting and stinging them) and exclude potential competitors queens. Workers reintroduced in their own colony after impregnated with non-familiar odor were treated as non-nestmates. The adaptive threshold hypothesis was confirmed, the main cue used by this ant species in nestmate recognition is olfactory signals.