The main purpose of the present paper is to investigate the effect of crack depth on the plastic load (collapse load) of miter pipe bends (MPB) under in-plane bending moment. The experimental work is conducted to investigate multimiter pipe bends, with a bend angle 90 deg, pipe bend factor h = 0.844, standard dimension ratio (SDR) = 11, and number of welding junctions m = 3 under a crosshead speed 500 mm/min. The material of the investigated pipe is a high-density polyethylene (HDPE), which is used in natural gas (NG) piping systems. The welds in the miter pipe bends are produced by butt-fusion method. The crack depth varies from intrados to extrados location according to the in-plane opening/closing bending moment, respectively. For each in-plane bending moment, the plastic load is obtained by the tangent intersection (TI) method from the load–deflection curves produced by the testing machine specially designed and constructed in the laboratory.5 The study reveals that increasing the crack depth leads to a decrease in the stiffness and plastic load of MPB for both in-plane closing and opening bending moment. Higher values of the plastic load are reached in case of opening bending moment. This behavior is true for all investigated crack depths. A circumferential external crack has an obvious effect on the behavior of load–deflection curve. The linear elastic region in both mode of loading decreases with increasing crack depth.