Cytoplasmic dynein is essential in motoneurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein's function on the postsynaptic side of the circuit. Here we report distinct postsynaptic roles for dynein at neuromuscular junctions (NMJs). Intriguingly, we show that dynein punctae accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles, a phosphatidylinositol 4-phosphate 5-kinase that produces PI(4,5)P2 to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupts the accumulation of Skittles, PI(4,5)P2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observe an increase in the clusters size of ionotropic glutamate receptor (iGluR), and an increase in the amplitude and frequency of mEJPs. However, PI(4,5)P2 levels do not affect iGluR clustering and dynein does not affect the protein levels of iGluR subunits at the NMJ, suggesting a separate, transport independent function for dynein in iGluR cluster organization. As dynein punctae closely associate with iGluR clusters, we propose that dynein physically tethers iGluR clusters at the postsynaptic membrane to ensure proper synaptic transmission.