Background
Selecting and prioritizing candidate disease genes is necessary before conducting laboratory studies as identifying disease genes from a large number of candidate genes using laboratory methods, is a very costly and time-consuming task. There are many machine learning-based gene prioritization methods. These methods differ in various aspects including the feature vectors of genes, the used datasets with different structures, and the learning model. Creating a suitable feature vector for genes and an appropriate learning model on a variety of data with different and non-Euclidean structures, including graphs, as well as the lack of negative data are very important challenges of these methods. The use of graph neural networks has recently emerged in machine learning and other related fields, and they have demonstrated superior performance for a broad range of problems.
Methods
In this study, a new semi-supervised learning method based on graph convolutional networks is presented using the novel constructing feature vector for each gene. In the proposed method, first, we construct three feature vectors for each gene using terms from the Gene Ontology (GO) database. Then, we train a graph convolution network on these vectors using protein–protein interaction (PPI) network data to identify disease candidate genes. Our model discovers hidden layer representations encoding in both local graph structure as well as features of nodes. This method is characterized by the simultaneous consideration of topological information of the biological network (e.g., PPI) and other sources of evidence. Finally, a validation has been done to demonstrate the efficiency of our method.
Results
Several experiments are performed on 16 diseases to evaluate the proposed method's performance. The experiments demonstrate that our proposed method achieves the best results, in terms of precision, the area under the ROC curve (AUCs), and F1-score values, when compared with eight state-of-the-art network and machine learning-based disease gene prioritization methods.
Conclusion
This study shows that the proposed semi-supervised learning method appropriately classifies and ranks candidate disease genes using a graph convolutional network and an innovative method to create three feature vectors for genes based on the molecular function, cellular component, and biological process terms from GO data.