-Purpose: Novel, "outside of the box" approaches are needed for evaluating candidate molecules, especially in oncology. Throughout the years of 2000-2010, the efficiency of drug development fell to barely acceptable levels, and in the second decade of this century, levels have improved only marginally. This dismal condition continues despite unprecedented progress in the development of a variety of high-throughput tools, computational methods, aggregated databases, drug repurposing programs and innovative chemistries. Here we tested a hypothesis that the economic impact of targeting a particular gene product is predictable a priori by employing a combination of transcriptome profiles and quantitative metrics reflecting existing literature. Methods: To extract classification features, the gene expression patterns of a posteriori high-impact and lowimpact anti-cancer target sets were compared. To minimize the possible bias of text-mining, the number of manuscripts published prior to the first clinical trial or relevant review paper, as well as its first derivative in this interval, were collected and used as quantitative metrics of public interest. Results: By combining the gene expression and literature mining features, a 4-fold enrichment in high-impact targets was produced, resulting in a favourable ROC curve analysis for the top impact targets. The dataset was enriched by the highest impact anticancer targets, while demonstrating drastic differences in economic value between high and low-impact targets.