Studying genetic variation of gene expression provides a powerful way to unravel the molecular components underlying complex traits. Expression QTL studies have been performed in several different model species, yet most of these linkage studies have been based on genetic segregation of two parental alleles. Recently we developed a multi-parental segregating population of 200 recombinant inbred lines (mpRILs) derived from four wild isolates (JU1511, JU1926, JU1931 and JU1941) in the nematode Caenorhabditis elegans. We used RNA-seq to investigate how multiple alleles affect gene expression in these mpRILs. We found 1,789 genes differentially expressed between the parental lines. Transgression, expression beyond any of the parental lines in the mpRILs, was found for 7,896 genes. For expression QTL mapping almost 9,000 SNPs were available. By combining these SNPs and the RNA-seq profiles of the mpRILs, we detected almost 6,800 eQTLs. Most trans-eQTLs (63%) co-locate in six newly identified trans-bands. The trans-eQTLs found in previous 2-parental allele eQTL experiments and this study showed some overlap (17.5%-46.8%), highlighting on the one hand that a large group of genes is affected by polymorphic regulators across populations and conditions, on the other hand it shows that the mpRIL population allows identification of novel gene expression regulatory loci. Taken together, the analysis of our mpRIL population provides a more refined insight into C. elegans complex trait genetics and eQTLs in general, as well as a starting point to further test and develop advanced statistical models for detection of multi-allelic eQTLs and systems genetics studying the genotype-phenotype relationship.