Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)
Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-In this paper, we present a new concept of optical packet/burst switching suitable for generalized multiprotocol label switched (GMPLS)-based optical networks. In such networks, optical labeled switched Paths are being established in a similar way as label-switched paths in MPLS. We use a wavelength label as well as an orthogonally modulated label, with respect to the payload modulation format, and which is encoded using either frequency-shift keying (FSK) or differential phase-shift keying (DPSK). Wavelength is used for switching in the node, whereas the orthogonal label defines the label-switched path. We present both simulation and experimental results to assess transmission performance of the proposed combined modulation scheme. In addition, we propose a suitable optical node architecture that can take advantage of this stacked label concept. Toward this, we use widely tunable wavelength converters to efficiently route IM/FSK (or IM/DPSK) optically labeled packets in an arrayed-waveguide grating (AWG)-based node structure. We present performance simulation results in terms of packet loss ratio and internal block probability. Internal blocking is an inherent problem of AWG optical routers, and a specific wavelength assignment algorithm has been developed to minimize it. Finally, the feasibility of IM/FSK transmission is experimentally demonstrated over an 88-km single-mode fiber span, and novel aspects of FSK generation and detection techniques are presented.Index T...