Feature extraction is essential for classifying different motor imagery (MI) tasks in a brain–computer interface (BCI). Although the methods of brain network analysis have been widely studied in the BCI field, these methods are limited by differences in network size, density, and standardization. To address this issue and improve classification accuracy, we propose a novel method, in which the hybrid features of the brain function based on the bilevel network are extracted. Minimum spanning tree (MST) based on electroencephalogram (EEG) signal nodes in different MIs is constructed as the first network layer to solve the global network connectivity problem. In addition, the regional network in different movement patterns is constructed as the second network layer to determine the network characteristics, which is consistent with the correspondence between limb movement patterns and cerebral cortex in neurophysiology. We attempt to apply MST to the classification of the MI EEG signals, and the bilevel network has better interpretability. Thereafter, a vector is formed by combining the MST fundamental features with the directional features of the regional network. Our method is validated using the BCI Competition IV Dataset I. Experimental results verify the feasibility of the bilevel network framework. Furthermore, the average classification performance of the proposed method reaches 89.50%, which is higher than that of other competing methods, thereby indicating that the bilevel network is effective for MI classification.