Neural networks are highly heterogeneous while homeostatic mechanisms ensure that this heterogeneity is kept within a physiologically safe range. One of such homeostatic mechanisms, inhibitory synaptic plasticity, has been observed across different brain regions. Computationally, however, inhibitory synaptic plasticity models often lead to a strong suppression of neuronal diversity. Here, we propose a model of inhibitory synaptic plasticity in which synaptic updates depend on presynaptic spike arrival and postsynaptic membrane voltage. Our plasticity rule regulates the network activity by setting a target value for the postsynaptic membrane potential over a long timescale. In a feedforward network, we show that our voltage-dependent inhibitory synaptic plasticity (vISP) model regulates the excitatory/inhibitory ratio while allowing for a broad range of postsynaptic firing rates and thus network diversity. In a feedforward network in which excitatory and inhibitory neurons receive correlated input, our plasticity model allows for the development of co-tuned excitation and inhibition, in agreement with recordings in rat auditory cortex. In recurrent networks, our model supports memory formation and retrieval while allowing for the development of heterogeneous neuronal activity. Finally, we implement our vISP rule in a model of the hippocampal CA1 region whose pyramidal cell excitability differs across cells. This model accounts for the experimentally observed variability in pyramidal cell features such as the number of place fields, the fields sizes, and the portion of the environment covered by each cell. Importantly, our model supports a combination of sparse and dense coding in the hippocampus. Therefore, our voltage-dependent inhibitory plasticity model accounts for network homeostasis while allowing for diverse neuronal dynamics observed across brain regions.