ii Abstract Wireless Mesh Networks (WMNs) provide a novel network architecture to extend broadband network coverage with low costs. Additionally, we see an increased interest in supporting demanding multimedia applications in next-generation wireless mesh networks. Provision of Quality of Service (QoS) in wireless mesh networks requires end-to-end support for routing packets via a suitable multihop route to the destination. However, in wireless mesh networks, if the medium access control layer does not support mechanisms for QoS support at a per-link level, all efforts for providing end-to-end QoS are futile. Hence, we see a trend towards standards for wireless mesh networks which support QoS at the Medium Access Control (MAC) level on a per-link basis. The IEEE 802.16 standard's mesh mode of operation, the IEEE 802.11s Mesh Deterministic Access (MDA) mode of operation, and upcoming sensor network standards such as the Wireless HART standard, support MAC layer QoS mechanisms. A common feature of these standards is the use of Time Division Multiple Access/Time Division Duplex (TDMA/TDD) for supporting QoS, by enabling the explicit reservation of bandwidth for data transmissions on individual links in the wireless mesh network. This has enabled the setup of wireless mesh networks which are able to support hard QoS guarantees, and are thus viable for supporting the highly demanding multimedia traffic which can be expected in such networks in future. This, makes wireless mesh networks using such standards attractive for network operators who want to extend the reach of their current wired networks, as well as cellular wireless networks to support additional traffic, and at the same time not incur exorbitant additional costs for the infrastructure setup.However, the bandwidth in such wireless mesh networks still remains a scarce resource. Recently, network coding has been investigated as a novel mechanism to permit the saving of valuable bandwidth in such wireless mesh networks for individual transmissions, thereby increasing the traffic carrying capacity of the wireless mesh networks significantly. Beginning from mainly theoretical work, recently we have also seen an effort to investigate the practical gains which can be obtained via deployment of network coding in wireless mesh networks. However, to-date, the practical investigations for deployment of network coding have been limited to wireless mesh networks based on the IEEE 802.11 standard. There have been no significant investigations on the deployment of network coding, and its benefits, in TDMA/TDD based multihop wireless mesh networks. Given, however, the fact that the next generation of wireless mesh networks would be using bandwidth reservation schemes to support advanced multimedia services, it is vital that network coding be investigated in the light of such wireless mesh networks. This work bridges the above gap.In this thesis we first demonstrate that contemporary packet-by-packet approaches to network coding are highly inefficient in reservation based...