Many conducting polymers, such as polyaniline [1][2][3], polypyrrole [4][5][6], polythiophene [7,8], poly(p-phenylene) [9] and so on, have been synthesized, since the exciting discovery of the dramatic increase in conductivity of polyacetylene after doping was achieved 30 years ago [10]. Clearly, the appearance of conducting polymers opened a significant way to prepare a new type of material. The conducting polymers have received a great deal of interest and are particularly appealing because they exhibit electrical, electronic, magnetic, and optical properties similar to metals or semiconductors while retaining their flexibility, and ease of processing, and moreover, have good redox reversibility and the electrochromic properties. These properties are favorable to their applications in the electronic, physical, chemical, biochemical, and environmental protection fields. Research on conducting polymers is also closely related to the rapid development in nanofibers, nanowires, nanotubes [11-20] and molecular electronics [21]. The nanostructured conducting polymers have aroused considerable attention in their unique properties [22][23][24][25] and potential applications [26][27][28][29][30][31][32].