“…Summarily, the highest docking scores of identified compounds (phylloquinone, linoleic acid, tricosylic acid, lignoceric acid, and stearic acid) revealed the best affinities against respective targets (PPARA, FABP4, PPARD, and PPARG CPT2), as also corroborated by their high number of interactions (except stearic acid, as replaced by tricosylic acid against CPT2) in comparison with other compounds and standards, indicating their superiority. However, since the PPAR signaling pathway is concerned with diabetes and obesity emergence via the downregulation of the PPARA, FABP4, PPARD, PPARG, and CPT2 genes, and coupled with the fact that phylloquinones, linoleic acid, tricosylic acid, and lignoceric acid maintained good stabilities with these targets or genes based on molecular docking evaluation, that these four compounds could serve as probable PPAR ligands and as potential therapeutic choices against T2D, obesity, and insulin resistance [50,73] brought about by the impairment of insulin signaling [68], thereby suggesting them as probable compounds that could be further developed into drug candidates for insulin sensitization and T2D management [74]. Notwithstanding the aforementioned, the number of genes attributed to a signaling pathway is measured by its rich factor or strength [75]; thus, the higher the rich factor, the greater the degree of enrichment [68].…”